

Theorem

NOTE: (also called the Sandwich Theorem OR Pinching Theorem)

 $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a If

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L.$$

1. Show that, $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$ Examples:

Can't use $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$ because the $\sin \frac{1}{x}$ does not exist as $x \to 0$.

We know $-1 \le \sin \frac{1}{x} \le 1$

So,
$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

$$\lim_{x \to 0} (-x^2) = 0 \qquad \lim_{x \to 0} x^2 = 0$$

$$\therefore \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

Apply the Squeeze Theorem to the following to determine the limit.

for all values of $0 \le x \le 2$

2. If
$$2x+2 \le f(x) \le x^2+3$$
 3. If $-x^2-2 \le g(x) \le 2x-1$ for all values of $0 \le x \le 2$ for $-2 \le x \le 0$

then $\lim_{x \to 1} f(x) =$

then
$$\lim_{x \to -1} g(x) =$$